
J .  Fluid Mech. (1972). vol. 51, part 3, pp. 613-618 

Printed in, &eat Britain 
613 

Wake collapse in a stratified fluid: linear treatment 

By R. J. HARTMAN AND H. W. LEWIS 
Department of Physics, University of California, Santa Barbara 

(Received 12 August 1971) 

The linear initial-value problem of a partially mixed cylindrical wake in a, 

uniformly stratified fluid is formulated and exact solutions are given for the 
density and velocity fields inside and just outside the original cylinder. An 
asymptotic expression for the far-field internal wave radiation is given and the 
corresponding solutions for a spherical wake geometry are noted. The treatment 
emphasizes the inadequancy of the usual linear Boussinesq approximation to 
describe the detailed nature of similar problems, in particular the fully mixed 
wake-collapse problem. 

1. Introduction 
In  recent years a number of authors have considered the problem of wake 

collapse in an incompressible stratified fluid. The theoretical treatments (Mei 
1969; Miles 1971) have usually involved a version of the linear Boussinesq 
approximation, though some numerical work has appeared. While there seems 
to be a consensus about the phenomenology in the case of a fully mixed wake 
(Mei 1969; Schooley & Stewart 1963; Wu 1965), for which the linear approxima- 
tion is of course invalid, it has seemed to us useful to treat a particularly simple 
version of the linear problem, for which an exact solution is obtainable. The 
results contain some surprises and provide some insight into the limitations of 
the linear treatment. 

2. Basic equations 
We study a linearly stratified fluid, with no boundaries, whose unperturbed 

density p,,(x) in the vicinity of the region of interest varies only in the vertical, z ,  
direction and does so gradually enough to justify a linear approximation. Thus 

(1) 

where poo is a ‘mean’ density for the problem. The initial-value problem is 
obtained by perturbing the density slope inside a cylinder of radius a ;  

Po(4 = Po0 - Pz, 

where the fully mixed case can be obtained formally be setting E = P. This state 
of affairs is illustrated in figure 1. We are working in a two-dimensional co- 
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ordinate system with axes x (vertical) and x (horizontal), with everything assumed 
independent of y. We shall also use polar co-ordinates ( r ,  a) in the plane of the 
problem, with the polar axis vertical. 

Newton's second law, in linearized form, is 

p(av/at) = - vp -pg2., (3) 

FIGURE 1. Initial density profile po(z) at z = 0. 

where v is the fluid velocity (in the x, x plane), p is the pressure, g the acceleration 
of gravity and P a vertical unit vector. Since the fluid is assumed incompressible 
we have 

(4) p v . ~  = ap/at+(v.v)p = 0,  

which allows us to introduce the stream function +, a vector in the y direction 
defined by 

(5) v = v x + .  

(6) The curl of (3) yields 

where the insertion of poo is usually called the Boussinesq approximation. It 
amounts to taking into account only density gradients that lead to a force 
(when multiplied by 9) .  Differentiating (6) with respect to time leads, in view 

a 
p - V x (V x +) = - gVp x 2, 

O0 at 

of (4), to 
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where we have used the linear approximation and defined the Viiiisalii frequency 

which we will treat as a constant hereafter. (Obviously, we could have chosen po 
to be exponential instead of as given in ( I ) . )  

Clearly, in view of (4), Sp can be obtained from +, so that ( 7 ) ,  with the initial 
condition ( 2 ) ,  is our problem. It begs for Fourier analysis, and the (exact) 

where the & means that the integral should be evaluated with each of the two 
signs and the results averaged; J, is the nth order Bessel function of the first 
kind.i The corresponding expression for + is obtained from (9) by multiplying 
the integrand by 2NlkP and taking the difference of integrals for the two signs. 
(There are other simpler ways to get the velocity distribution.) It is worth re- 
emphasizing that ( 9 )  is the exact solution to a linear problem. 

3. Quadratures 
The evaluation of ( 9 )  is greatly facilitated by the observation that the ex- 

pression in the integrand involving the square roots admits of an expansion in 
terms of Chebyshev polynomials of the second kind Um. Explicitly, if 

w2 = U2+V2--2uvcosy 

then 
00 

J,(w)/w = 2 ( l+m)J , ( .U)JdUm(cosy) ,  U V 
m=O 

(see HMF, equation 9.1.80) where 

V,(cos y) = sin((m+ 1)y)lsiny. (11 )  

Thus, after a bit of arithmetic and after replacing y by 01 - +T, we find that 

Before proceeding to the final form some observations about (12 )  are in order. 

term in (12) is non-vanishing. Thus, exactly, 
First and foremost, inside the original cylinder, where r < a, only the first 

Sp = 2szJ,(Nt)/Nt for r < a. (13) 

The original linear (proportional to x )  perturbation inside the cylinder remains 
linear, overshoots its correction and finally damps out.$ 

-t Here, and henceforth, we use the notation of Abramowitz & Stegun (1970), whose book 
Handbook of Mathematical Functions is hereafter referred to as HMF. 

3 It is worthwhile noting that the corresponding problem with a spherical wake geometry 
also admits a closed solution for r < a. We find Sp(r , t )  = *7rezE,(Nt)/Nt for r < a, where 
E,(Nt) is the second-order Weber function. The similarity to the problem under investiga- 
tion is evident, the behaviour of E,(Nt) being qualitatively the same as J,(Nt). 
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The fluid velocities for r < a are most easily obtained from (13) by noting that 

V ,  = - (2~~//3t) JZ(Nt). ( 1 4 4  

v, = (2ex/:IPt) JZ(Nt), (14b) 

v, = (1/p) a(Sp)/at, so that 

In  view of the incompressibility condition (4) we also have 

SO that the fluid particles inside the original cylinder move on right hyperbolae, 
overshooting their ultimate positions on the first pass. The ultimate displace- 
ment of a fluid particle that starts inside the original cylinder at (5, z)  is given by 

AX = ex/p, AZ = - E Z / ~ ,  (15) 

so that the fluid particle finally moves just far enough down its own hyperbola to 
reach the level which is appropriate for it. I n  particular, the original circular 
cross-section of the cylinder deforms into an ellipse of semi-major axis a( 1 + e / p )  
and semi-minor axis a( 1 - e /p )  after oscillating around this shape. 

We now turn to the behaviour of the fluid for r > a, to which all terms in (1  2) 
except the first contribute. For r > a and I > 1 we need 

(see HMF, equations 11.4.34and 15.4.6) where Pkn(() are the Jacobi poly- 
nomials, which for this case can be reduced to a more recognizable form involving 
the familiar Legendre polynomials Pl: 

We haveIthen, for r > a:  

where we have introduced 6 = 1 - 2a2/r2. As 

r -+ a+, 5 +- 1 and P,'",)( - 1) = ( -  1)l--1 (19) 

so (21+ 1). 
cos [( 2z + 1) a] J,,+,(Nt) 

Nt 
Sp(r -+ a+) = -2ez c, 

1=1 cosa 

Comparing this with (13), we find an exact expression for the density discon- 
tinuity across the surface of the cylinder 

Ap = Sp(r + a-) - Sp(r -+ a+) 
W cos [(21+ 1) .IJzlt-l(Nt) 

Nt * 
= 2ez c, (21+ 1) 

cosa z=o 

This sum can be extended to - 00 and carried out exactly. We then find 

A p  = ez cos (Nt sina), (22) 

an unexpected result. From (22) and (13) we find 

Sp( r + a+) = ~ 4 2  J,(Nt)/Nt - cos (Nt sin a)] ,  (23) 
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which does not go to zero as t --f co but oscillates more and more rapidly as a 
function of a. Such behaviour is indicative of an instability in a more realistic 
calculation, though the relation to the expected Kelvin-Helmholtz instability 
on the surface is unclear. 

We turn finally to the behaviour at large distances, for which we need the 
behaviour of the P~2~o)(E) for near unity: 

Pj2>O)(E) + (r2/az)Jz(21a/r) (r > a) ,  ( 2 4 )  

in which we have also assumed 1 < 1 < @/a2 for convenience. It will be seen 
below that this is the range of interest for 1. This leads to 

(Recall, as always, that v, can be obtained from Sp through v, = (118) a(&)/& 
and vx from v, through the incompressibility condition (4).) 

For any given point (r ,  a) at any time, the terms in the sum (25) increase in 
magnitude with I and oscillate rapidly in sign, so it is appropriate to look for a 
‘constant-phase’ value of I as a means of estimating the sum. By either this 
method, or by a direct saddle-point integration in (9), we find that 

2eza2 
r2 

Sp --f -tan a sin (Nt cos a) J, 

for r B a. This represents a pulse of frequency N cos a which passes a point (r,  a) 
at a time t N r/Nasina.  The denominator is the group velocity of a wave of 
wavenumber - l / a ,  in the correct direction, where N cos a is the frequency of 
such a wave. (Recall that the group and phase velocities of V&is&l& waves are 
mutually orthogonal.) 

4. Conclusions and caveats 
The behaviour of the solution (26) for large distances from the source contains 

no surprises and represents the radiation from the source of the expected pulse 
of V&isd& waves, necessary to get rid of the energy stored in the initial per- 
turbation. 

On the other hand, the behaviour near the perturbation has a number of 
unrealistic features. The rapidly oscillating (in space) behaviour just outside 
the original cylinder at long times cannot appear in the solution of a realistic 
hydrodynamic problem. Since the solution is exact, this difficulty must be 
ascribed to the model. In  addition, the velocity of the fluid displays an infinite 
shear on the surface of the cylinder, and this too would lead to a Kelvin- 
Helmholtz instability in a realistic problem. It would seem foolhardy, therefore, 
to set B = ,8 and use a linear treatment to study the fully mixed wake-collapse 
problem. 
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